3.776 \(\int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=145 \[ \frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {7}{6 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {1}{3 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \]

[Out]

(1/4-1/4*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)
/a^(3/2)/d+7/6/a/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+1/3/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {4241, 3559, 3596, 12, 3544, 205} \[ \frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {7}{6 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {1}{3 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((1/4 - I/4)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[
Tan[c + d*x]])/(a^(3/2)*d) + 1/(3*d*Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) + 7/(6*a*d*Sqrt[Cot[c + d
*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3559

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d))
, Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cot (c+d x)}}{(a+i a \tan (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx\\ &=\frac {1}{3 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {5 a}{2}-i a \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx}{3 a^2}\\ &=\frac {1}{3 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {7}{6 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {3 a^2 \sqrt {a+i a \tan (c+d x)}}{4 \sqrt {\tan (c+d x)}} \, dx}{3 a^4}\\ &=\frac {1}{3 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {7}{6 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac {1}{3 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {7}{6 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{2 d}\\ &=\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{3/2} d}+\frac {1}{3 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {7}{6 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.30, size = 158, normalized size = 1.09 \[ -\frac {i e^{-4 i (c+d x)} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {\cot (c+d x)} \left (-7 e^{2 i (c+d x)}+8 e^{4 i (c+d x)}+3 e^{3 i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )-1\right )}{6 \sqrt {2} a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-1/6*I)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(-1 - 7*E^((2*I)*(c + d*x)) + 8*E^((4*I)*(c
+ d*x)) + 3*E^((3*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c +
 d*x))]])*Sqrt[Cot[c + d*x]])/(Sqrt[2]*a^2*d*E^((4*I)*(c + d*x)))

________________________________________________________________________________________

fricas [B]  time = 1.72, size = 354, normalized size = 2.44 \[ \frac {{\left (3 \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left ({\left (\sqrt {2} {\left (4 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - 4 i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} + 4 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 3 \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left ({\left (\sqrt {2} {\left (-4 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + 4 i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} + 4 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (-8 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 7 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/12*(3*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log((sqrt(2)*(4*I*a^2*d*e^(2*I*d*x + 2*I*c) - 4*I*a^2
*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/2*I/
(a^3*d^2)) + 4*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 3*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log
((sqrt(2)*(-4*I*a^2*d*e^(2*I*d*x + 2*I*c) + 4*I*a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x +
2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/2*I/(a^3*d^2)) + 4*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + sqr
t(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(-8*I*e^(4*
I*d*x + 4*I*c) + 7*I*e^(2*I*d*x + 2*I*c) + I))*e^(-3*I*d*x - 3*I*c)/(a^2*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\cot \left (d x + c\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(cot(d*x + c))/(I*a*tan(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 2.01, size = 468, normalized size = 3.23 \[ \frac {\left (-\frac {1}{12}-\frac {i}{12}\right ) \left (6 i \cos \left (d x +c \right ) \sin \left (d x +c \right ) \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \sqrt {2}+7 i \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+6 \left (\cos ^{2}\left (d x +c \right )\right ) \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \sqrt {2}+9 i \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-3 i \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \sqrt {2}\, \sin \left (d x +c \right )+7 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-9 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-3 \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \sqrt {2}\, \cos \left (d x +c \right )-7 i \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-3 \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\right ) \sqrt {2}-7 \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{d \left (2 i \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 \left (\cos ^{2}\left (d x +c \right )\right )-1\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

(-1/12-1/12*I)/d*(6*I*cos(d*x+c)*sin(d*x+c)*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(
1/2)+7*I*cos(d*x+c)^2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+6*cos(d*x+c)^2*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/si
n(d*x+c))^(1/2)*2^(1/2))*2^(1/2)+9*I*cos(d*x+c)*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-3*I*arctan((1/2+
1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*sin(d*x+c)+7*cos(d*x+c)^2*((-1+cos(d*x+c))/sin(d*x+
c))^(1/2)-9*cos(d*x+c)*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-3*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin
(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*cos(d*x+c)-7*I*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-3*arctan((1/2+1/2*I)*((-1+co
s(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)-7*((-1+cos(d*x+c))/sin(d*x+c))^(1/2))*(cos(d*x+c)/sin(d*x+c))^(1/
2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/(2*I*cos(d*x+c)*sin(d*x+c)+2*cos(d*x+c)^2-1)/((-1+cos(d*x+c)
)/sin(d*x+c))^(1/2)/a^2

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\mathrm {cot}\left (c+d\,x\right )}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(1/2)/(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int(cot(c + d*x)^(1/2)/(a + a*tan(c + d*x)*1i)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\cot {\left (c + d x \right )}}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral(sqrt(cot(c + d*x))/(I*a*(tan(c + d*x) - I))**(3/2), x)

________________________________________________________________________________________